Image generated by TextSpace.net, hosted on ImageShack.us

Selasa, 26 Februari 2013

Plant

Plants, also called green plants (Viridiplantae in Latin), are living organisms of the kingdom Plantae including such multicellular groups as flowering plants, conifers, ferns and mosses, as well as, depending on definition, the green algae, but not red or brown seaweeds like kelp, nor fungi or bacteria.
Green plants have cell walls with cellulose and characteristically obtain most of their energy from sunlight via photosynthesis using chlorophyll contained in chloroplasts, which gives them their green color. Some plants are parasitic and may not produce normal amounts of chlorophyll or photosynthesize. Plants are also characterized by sexual reproduction, modular and indeterminate growth, and an alternation of generations, although asexual reproduction is common, and some plants bloom only once while others bear only one bloom.
Precise numbers are difficult to determine, but as of 2010, there are thought to be 300–315 thousand species of plants, of which the great majority, some 260–290 thousand, are seed plants (see the table below).[2] Green plants provide most of the world's molecular oxygen and are the basis of most of the earth's ecologies, especially on land. Plants described as grains, fruits and vegetables form mankind's basic foodstuffs, and have been domesticated for millennia. Plants enrich our lives as flowers and ornaments. Until recently and in great variety they have served as the source of most of our medicines and drugs. Their scientific study is known as botany.

Contents

Definition

Plants are one of the two groups into which all living things have been traditionally divided; the other is animals. The division goes back at least as far as Aristotle (384 BC – 322 BC) who distinguished between plants which generally do not move, and animals which often are mobile to catch their food. Much later, when Linnaeus (1707–1778) created the basis of the modern system of scientific classification, these two groups became the kingdoms Vegetabilia (later Metaphyta or Plantae) and Animalia (also called Metazoa). Since then, it has become clear that the plant kingdom as originally defined included several unrelated groups, and the fungi and several groups of algae were removed to new kingdoms. However, these organisms are still often considered plants, particularly in popular contexts.
Outside of formal scientific contexts, the term "plant" implies an association with certain traits, such as being multicellular, possessing cellulose, and having the ability to carry out photosynthesis.[3][4]

Current definitions of Plantae

When the name Plantae or plant is applied to a specific group of organisms or taxon, it usually refers to one of three concepts. From least to most inclusive, these three groupings are:
Name(s) Scope Description
Land plants, also known as Embryophyta or Metaphyta. Plantae sensu strictissimo This group includes the liverworts, hornworts, mosses, and vascular plants, as well as fossil plants similar to these surviving groups.
Green plants - also known as Viridiplantae, Viridiphyta or Chlorobionta Plantae sensu stricto This group includes the land plants plus various groups of green algae, including stoneworts. The names given to these groups vary considerably as of July 2011. Viridiplantae encompass a group of organisms that possess chlorophyll a and b, have plastids that are bound by only two membranes, are capable of storing starch, and have cellulose in their cell walls. It is this clade which is mainly the subject of this article.
Archaeplastida, Plastida or Primoplantae Plantae sensu lato This group comprises the green plants above plus Rhodophyta (red algae) and Glaucophyta (glaucophyte algae). This clade includes the organisms that eons ago acquired their chloroplasts directly by engulfing cyanobacteria.
Another way of looking at the relationships between the different groups which have been called "plants" is through a cladogram, which shows their evolutionary relationships. The evolutionary history of plants is not yet completely settled, but one accepted relationship between the three groups described above is shown below.[5] Those which have been called "plants" are in bold.
Archaeplastida 

Glaucophyta (glaucophyte algae)



Rhodophyta (red algae)


Viridiplantae 

Chlorophyta (part of green algae)

Streptophyta 

streptophyte algae (part of green algae)



Charales (stoneworts, often included
in green algae)


land plants or embryophytes







groups traditionally called "algae"
The way in which the groups of green algae are combined and named varies considerably between authors.

Algae

Algae comprise several different groups of organisms which produce energy through photosynthesis and for that reason have been included in the plant kingdom in the past. Most conspicuous among the algae are the seaweeds, multicellular algae that may roughly resemble land plants, but are classified among the brown, red and green algae. Each of these algal groups also includes various microscopic and single-celled organisms. There is good evidence that some of these algal groups arose independently from separate non-photosynthetic ancestors, with the result that many groups of algae are no longer classified within the plant kingdom as it is defined here.[6][7]
The Viridiplantae, the green plants – green algae and land plants – form a clade, a group consisting of all the descendants of a common ancestor. With a few exceptions among the green algae, all green plants have many features in common, including cell walls containing cellulose, chloroplasts containing chlorophylls a and b, and food stores in the form of starch. They undergo closed mitosis without centrioles, and typically have mitochondria with flat cristae. The chloroplasts of green plants are surrounded by two membranes, suggesting they originated directly from endosymbiotic cyanobacteria.
Two additional groups, the Rhodophyta (red algae) and Glaucophyta (glaucophyte algae), also have chloroplasts which appear to be derived directly from endosymbiotic cyanobacteria, although they differ in the pigments which are used in photosynthesis and so are different in colour. All three groups together are generally believed to have a single common origin, and so are classified together in the taxon Archaeplastida, whose name implies that the chloroplasts or plastids of all the members of the taxon were derived from a single ancient endosymbiotic event. This is the broadest modern definition of the plants.
In contrast, most other algae (e.g. heterokonts, haptophytes, dinoflagellates, and euglenids) not only have different pigments but also have chloroplasts with three or four surrounding membranes. They are not close relatives of the Archaeplastida, presumably having acquired chloroplasts separately from ingested or symbiotic green and red algae. They are thus not included in even the broadest modern definition of the plant kingdom, although they were in the past.
The green plants or Viridiplantae were traditionally divided into the green algae (including the stoneworts) and the land plants. However, it is now known that the land plants evolved from within a group of green algae, so that the green algae by themselves are a paraphyletic group, i.e. a group which excludes some of the descendants of a common ancestor. Paraphyletic groups are generally avoided in modern classifications, so that in recent treatments the Viridiplantae have been divided into two clades, the Chlorophyta and the Streptophyta (or Charophyta).[8][9]
The Chlorophyta (a name that has also been used for all green algae) are the sister group to the group from which the land plants evolved. There are about 4,300 species[10] of mainly marine organisms, both unicellular and multicellular. The latter include the sea lettuce, Ulva.
The other group within the Viridiplantae are the mainly freshwater or terrestrial Streptophyta (or Charophyta), which consist of several groups of green algae plus the stoneworts and land plants. (The names have been used differently, e.g. Streptophyta to mean the group which excludes the land plants and Charophyta for the stoneworts alone or the stoneworts plus the land plants.) Streptophyte algae are either unicellular or form multicellular filaments, branched or unbranched.[9] The genus Spirogyra is a filamentous streptophyte alga familiar to many, as it is often used in teaching and is one of the organisms responsible for the algal "scum" which pond-owners so dislike. The freshwater stoneworts strongly resemble land plants and are believed to be their closest relatives. Growing underwater, they consist of a central stalk with whorls of branchlets, giving them a superficial resemblance to horsetails, species of the genus Equisetum, which are true land plants.

Tidak ada komentar:

Posting Komentar